Chapter 1

Kähler manifolds

1.1 Manifolds

Let M be an 2n-dimensional manifold. Let TM be the tangent vector bundle over M. Let $\operatorname{End}(TM)$ be the real vector bundle over M such that the fibre $\operatorname{End}(TM)|_x$ for any $x \in M$ is canonically isomorphic to $\operatorname{End}(TM|_x)$. Let Ebe a vector bundle over M. Let $\mathscr{C}^{\infty}(M, E)$ be the space of smooth sections of E on M. Let $\Omega^r(M, E)$ be the smooth r-forms on M with values in E.

Definition 1.1.1. The manifold M is called a **almost complex manifold** if there exists $J \in \mathscr{C}^{\infty}(M, \operatorname{End}(TM))$ such that $J^2 = -\operatorname{Id}$. The endomorphism J is called the **almost complex structure** of TM.

For $x \in M$, the almost complex structure J induces a splitting of complex vector spaces,

$$T_x M \otimes_{\mathbb{R}} \mathbb{C} = T_x^{(1,0)} M \oplus T_x^{(0,1)} M, \tag{1.1.1}$$

where $T_x^{(1,0)}M$ and $T_x^{(0,1)}M$ are the eigenspaces of J corresponding to the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, respectively. Since J is smooth, $T^{(1,0)}M = \{T_x^{(1,0)}M\}_{x\in M}$ and $T^{(0,1)}M = \{T_x^{(0,1)}M\}_{x\in M}$ are vector bundles.

A continuous map $\pi: E \to M$ between two Hausdorff spaces is called a complex vector bundle of rank r if for any $x \in M$, $E_x := \pi^{-1}(x)$ is a complex vector space of dimension r and there is a neighbourhood U of xand a homeomorphism

$$\psi: \pi^{-1}(U) \to U \times \mathbb{C}^r \tag{1.1.2}$$

such that for any $p \in U$, $\psi(E_p) = \{p\} \times \mathbb{C}^r$ and $\psi|_{E_p}$ is a complex linear space isomorphism. The pair (U, ψ) is called a local trivialization. For a complex

vector bundle $\pi: E \to M$, E is called the total space and M the base space. We often say that E is a vector bundle over M. Notice that for two local trivializations (U_i, ψ_i) and (U_j, ψ_j) , the map $\psi_i \circ \psi_j^{-1}: (U_i \cap U_j) \times \mathbb{C}^r \to (U_i \cap U_j) \times \mathbb{C}^r$ induces a transition map

$$\psi_{ij}: U_i \cap U_j \to GL(r, \mathbb{C}).$$
 (1.1.3)

When r = 1, we will call E a complex line bundle.

It is easy to see that The eigenbundles $T^{(1,0)}M$ and $T^{(0,1)}M$ are complex vector bundles over M.

Let $T^{*(1,0)}M$ and $T^{*(0,1)}M$ be the dual bundles respectively. We denote by

$$\Omega^{p,q}(M) := \mathscr{C}^{\infty}(M, \Lambda^p(T^{*(1,0)}M) \otimes \Lambda^q(T^{*(0,1)}M)). \tag{1.1.4}$$

By (1.1.1), we have

$$\Omega^k(M,\mathbb{C}) = \bigoplus_{p+q=k} \Omega^{p,q}(M). \tag{1.1.5}$$

If $\alpha \in \Omega^{p,q}(M)$, we say that α is a (p,q)-form. For $\alpha \in \Omega^{p,q}(M)$, from (1.1.5), we have $d\alpha = \sum_{j+k=p+q+1} (d\alpha)^{(j,k)}$, where $(d\alpha)^{(j,k)} \in \Omega^{j,k}(M)$. We define

$$\partial \alpha = (d\alpha)^{(p+1,q)}, \quad \bar{\partial} \alpha = (d\alpha)^{(p,q+1)}.$$
 (1.1.6)

Let g be any Riemannian metric on TM compatible with J, i.e.,

$$g(JU, JV) = g(U, V) \tag{1.1.7}$$

for any $U, V \in T_xM$, $x \in M$.

Take $e_1 \in T_xM$. Then $g(Je_1, e_1) = 0$ by $J^2 = -\operatorname{Id}$. Take orthonormal vectors $e_1, \dots, e_k \in T_xM$. If $e_{k+1} \notin \operatorname{span}\{e_1, Je_1, \dots e_k, Je_k\}$, then so is Je_{k+1} . So we can construct an orthonormal basis of T_xM with the form $\{e_1, \dots, e_{2n}\}$ such that $e_{n+i} = Je_i$, $1 \leq i \leq n$. Moreover,

$$T_x^{(1,0)}M = \mathbb{C}\{e_1 - \sqrt{-1}e_{n+1}, \cdots, e_n - \sqrt{-1}e_{2n}\},\$$

$$T_x^{(0,1)}M = \mathbb{C}\{e_1 + \sqrt{-1}e_{n+1}, \cdots, e_n + \sqrt{-1}e_{2n}\}.$$
(1.1.8)

We also denote by g the \mathbb{C} -bilinear form on $TM \otimes_{\mathbb{R}} \mathbb{C}$ induced by g on TM. From (1.1.8), we could see that g vanishes on $T^{(1,0)}M \times T^{(1,0)}M$ and $T^{(0,1)}M \times T^{(0,1)}M$. That is, for any $Z, Z' \in T^{(1,0)}M$,

$$g(Z, Z') = g(\overline{Z}, \overline{Z'}) = 0. \tag{1.1.9}$$

1.1. MANIFOLDS

Let

$$\theta_j = \frac{1}{\sqrt{2}}(e_j - \sqrt{-1}e_{n+j}), \quad \bar{\theta}_j = \frac{1}{\sqrt{2}}(e_j + \sqrt{-1}e_{n+j}), \quad 1 \le j \le n. \quad (1.1.10)$$

Then $\{\theta_j\}_{1\leq j\leq n}$ and $\{\bar{\theta}_j\}_{1\leq j\leq n}$ form orthonormal basis of complex vector spaces $T_x^{(1,0)}M$ and $T_x^{(0,1)}M$ respectively. Let $\{\theta^j\}_{1\leq j\leq n}$ be the dual frame of $\{\theta_j\}_{1\leq j\leq n}$. Let e^i be the dual of e_i . We have

$$\theta^{j} = \frac{1}{\sqrt{2}}(e^{j} + \sqrt{-1}e^{n+j}), \quad \bar{\theta}^{j} = \frac{1}{\sqrt{2}}(e^{j} - \sqrt{-1}e^{n+j}), \quad 1 \le j \le n. \quad (1.1.11)$$

From (1.1.11), we have

$$(\sqrt{-1})^n \theta^1 \wedge \dots \wedge \theta^n \wedge \bar{\theta}^1 \wedge \dots \wedge \bar{\theta}^n = e^1 \wedge \dots \wedge e^{2n}. \tag{1.1.12}$$

Proposition 1.1.2. The almost complex manifold is orientable.

Proof. Let $\{e'_1, \dots, e'_{2n}\}$ be another basis of TM. We may assume that $e'_{n+i} = Je'_i$, $1 \leq i \leq n$. Then there exists $\alpha \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ such that $\theta'^1 \wedge \dots \wedge \theta'^n = \alpha \cdot \theta^1 \wedge \dots \wedge \theta^n$. Since $\bar{\theta}'^1 \wedge \dots \wedge \bar{\theta}'^n = \bar{\alpha} \cdot \bar{\theta}^1 \wedge \dots \wedge \bar{\theta}^n$, from (1.1.12), we have $e'^1 \wedge \dots \wedge e'^{2n} = |\alpha|^2 e^1 \wedge \dots \wedge e^{2n}$.

So our proposition follows from
$$|\alpha|^2 > 0$$
.

Let ω be the real 2-form defined by

$$\omega(X,Y) = q(JX,Y) \tag{1.1.13}$$

3

for vector fields X, Y. Note that $\omega(X, Y) = -\omega(Y, X)$ follows from $g(JX, Y) = g(J^2X, JY) = -g(JY, X)$. Since g is non-degenerate, by (1.1.9), ω is a non-degenerate real (1, 1)-form. Since g is compatible with J, so is ω .

Conversely, we have the following lemma.

Lemma 1.1.3. If there exists a non-degenerate real 2-form ω on M, then M is almost complex.

Proof. Choose a metric g on TM. Since ω is real and non-degenerate, there exists invertible skew-symmetric $A \in \mathscr{C}^{\infty}(M, \operatorname{End}(TM))$ such that

$$\omega(X,Y) = g(AX,Y) \tag{1.1.14}$$

for any vector fields X, Y. Since $-A^2$ is positive definite, $(-A^2)^{1/2}$ is invertible. Then our lemma follows by defining $J = ((-A^2)^{1/2})^{-1}A$.

Note that fixing a non-degenerate real (1,1)-form ω on almost complex manifold (M,J) compatible with J, we could construct a Riemannian metric compatible with J by

$$g(X,Y) = \omega(X,JY) \tag{1.1.15}$$

for vector fields X and Y.

Definition 1.1.4. A triple (g, J, ω) satisfying (1.1.7) and (1.1.13) is called a **compatible triple** of almost complex manifold M.

Definition 1.1.5. A **complex manifold** is a manifold with an atlas of charts to the open unit disk in \mathbb{C}^n , such that the transition maps are holomorphic.

Proposition 1.1.6. The complex manifold is almost complex.

Proof. Let $\{z^1, \dots z^n\}$ be a local chart of a complex manifold M with complex dimension n. Denote by $z^k = x^k + \sqrt{-1}y^k$. Then $\{x^1, y^1, \dots, x^n, y^n\}$ is a local chart of M as real manifold. So $\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial y^1}, \dots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^n}\}$ is a real basis of TM. For $x \in M$, the linear transform $J_x : T_xM \to T_xM$ is defined by

$$J_x\left(\frac{\partial}{\partial x^k}\right) = \frac{\partial}{\partial y^k}, \quad J_x\left(\frac{\partial}{\partial y^k}\right) = -\frac{\partial}{\partial x^k}.$$
 (1.1.16)

Obviously, $J_x^2 = -\operatorname{Id}$.

We claim that the definition of J_x does not depend on the coordinates. In fact, let $\{\theta^1, \dots, \theta^n\}$ be another local complex chart of M. Then by the definition of complex manifold, z^j is holomorphic on θ^k for any $1 \leq j, k \leq n$. That is, for $\theta^k = u^k + \sqrt{-1}v^k$, we have $\frac{\partial x^j}{\partial u^k} = \frac{\partial y^j}{\partial v^k}$, $\frac{\partial x^j}{\partial v^k} = -\frac{\partial y^j}{\partial u^k}$ (Cauchy-Riemann equation). Therefore,

$$J_x\left(\frac{\partial}{\partial u^k}\right) = J_x\left(\frac{\partial x^j}{\partial u^k}\frac{\partial}{\partial x^j} + \frac{\partial y^j}{\partial u^k}\frac{\partial}{\partial y^j}\right) = \frac{\partial}{\partial v^k},$$

$$J_x\left(\frac{\partial}{\partial v^k}\right) = J_x\left(\frac{\partial x^j}{\partial v^k}\frac{\partial}{\partial x^j} + \frac{\partial y^j}{\partial v^k}\frac{\partial}{\partial y^j}\right) = -\frac{\partial}{\partial u^k}.$$

So the endomorphism J in (1.1.16) is global defined.

The proof of our proposition is completed.

For a complex manifold M, the almost complex structure defined in (1.1.16) is called the canonical almost complex structure of M. Moreover,

1.1. MANIFOLDS 5

 $\{\frac{\partial}{\partial z^1},\cdots,\frac{\partial}{\partial z^n}\}$ and $\{\frac{\partial}{\partial \bar{z}^1},\cdots,\frac{\partial}{\partial \bar{z}^n}\}$ are basis of $T_x^{(1,0)}M$ and $T_x^{(0,1)}M$ respectively. Let dz^i , $d\bar{z}^i$ be the duals of $\frac{\partial}{\partial z^i}$, $\frac{\partial}{\partial \bar{z}^i}$ respectively. Then

$$dz^{i} = dx^{i} + \sqrt{-1}dy^{i}, \quad d\bar{z}^{i} = dx^{i} - \sqrt{-1}dy^{i}$$
 (1.1.17)

and

$$\frac{\partial}{\partial z^i} = \frac{1}{2} \left(\frac{\partial}{\partial x^i} - \sqrt{-1} \frac{\partial}{\partial y^i} \right), \quad \frac{\partial}{\partial \bar{z}^i} = \frac{1}{2} \left(\frac{\partial}{\partial x^i} + \sqrt{-1} \frac{\partial}{\partial y^i} \right). \tag{1.1.18}$$

From (1.1.9), locally for any $1 \le i, j \le n$,

$$g\left(\frac{\partial}{\partial z^i}, \frac{\partial}{\partial z^j}\right) = g\left(\frac{\partial}{\partial \overline{z}^i}, \frac{\partial}{\partial \overline{z}^j}\right) = 0.$$
 (1.1.19)

We write

$$g_{i\bar{j}} = g\left(\frac{\partial}{\partial z^i}, \frac{\partial}{\partial \bar{z}^j}\right), \quad g_{\bar{i}j} = g\left(\frac{\partial}{\partial \bar{z}^i}, \frac{\partial}{\partial z^j}\right).$$
 (1.1.20)

Then

$$g_{i\bar{j}} = \overline{g_{\bar{i}j}}. (1.1.21)$$

From (1.1.13) and (1.1.18), we have

$$\omega = \sqrt{-1}g_{i\bar{j}}dz^i \wedge d\bar{z}^j. \tag{1.1.22}$$

We could easily check that the right hand side of (1.1.22) does not depend on the basis.

The Nijenhuis tensor $N^J: TM \times TM \to TM$ is given by

$$N^{J}(V, W) = [V, W] + J[JV, W] + J[V, JW] - [JV, JW]$$
 (1.1.23)

for V, W vector fields on M.

Theorem 1.1.7 (Newlander-Nirenberg). Let (M, J) be a almost complex manifold. The following statements are equivalent:

- (1) M is a complex manifold and J is the canonical almost complex structure of M.
- (2) $T^{(1,0)}M$ is formally integrable, that is, for any $X,Y \in \mathscr{C}^{\infty}(M,T^{(1,0)}M)$, $[X,Y] \in \mathscr{C}^{\infty}(M,T^{(1,0)}M)$.
 - (3) $T^{(0,1)}M$ is formally integrable.
 - (4) $N^J = 0$.
 - (5) On $\Omega^{(1,0)}(M)$, $d = \partial + \bar{\partial}$.
 - (6) On $\Omega^{(p,q)}(M)$, $d = \partial + \bar{\partial}$.
 - (7) $\bar{\partial}^2 = 0$.

If (M, J) satisfies one of the above statements, we say that the almost complex structure J is integrable.

Proof. (1) \Rightarrow (2): Write $X = X^i \frac{\partial}{\partial z^i}$ and $Y = Y^j \frac{\partial}{\partial z^j}$. Then

$$[X,Y] = X^{i} \frac{\partial Y^{j}}{\partial z^{i}} \frac{\partial}{\partial z^{j}} + Y^{j} \frac{\partial X^{i}}{\partial z^{j}} \frac{\partial}{\partial z^{i}} \in \mathscr{C}^{\infty}(M, T^{(1,0)}M).$$

 $(2) \Leftrightarrow (3)$ follows from $\overline{[X,Y]} = [\overline{X},\overline{Y}].$

 $(3) \Leftrightarrow (4): \text{ For } X,Y \in \mathscr{C}^{\infty}(M,TM), \text{ then } X+\sqrt{-1}JX, Y+\sqrt{-1}JY \in \mathscr{C}^{\infty}(M,T^{(0,1)}M). \text{ Let } Z=[X+\sqrt{-1}JX,Y+\sqrt{-1}JY]. \text{ It is easy to calculate that } Z-\sqrt{-1}JZ=N^J(X,Y)-\sqrt{-1}JN^J(X,Y). \text{ So } Z\in \mathscr{C}^{\infty}(M,T^{(0,1)}M)\Leftrightarrow N^J(X,Y)=0.$

(3) \Leftrightarrow (5): (5) is equivalent to that for any $\theta \in \Omega^{(1,0)}(M)$, $(d\theta)^{(0,2)} = 0$. For $X, Y \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$,

$$d\theta(X,Y) = X(\theta(Y)) - Y(\theta(X)) - \theta([X,Y]) = -\theta([X,Y]).$$

So

$$d\theta(X,Y) = 0 \quad \forall \theta \in \Omega^{(1,0)}(M), X, Y \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$$

$$\Leftrightarrow \theta([X,Y]) = 0 \quad \forall \theta \in \Omega^{(1,0)}(M), X, Y \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$$

$$\Leftrightarrow [X,Y] \in \mathscr{C}^{\infty}(M, T^{(0,1)}M) \quad \forall X, Y \in \mathscr{C}^{\infty}(M, T^{(0,1)}M)$$

(5) \Leftrightarrow (6): Suppose (5) holds. By complex conjugation, on $\Omega^{(0,1)}(M)$, we have $d = \partial + \bar{\partial}$. Then (6) follows from the Leibniz rule.

 $(6) \Rightarrow (7)$ follows from $d^2 = 0$.

 $(7)\Rightarrow(5)$: Let $\{\theta^1,\cdots,\theta^n\}$ be a local frame of $T^{*(1,0)}M$. Let

$$d\theta^i = A^i_{jk}\theta^j \wedge \theta^k + B^i_{jk}\theta^j \wedge \bar{\theta}^k + C^i_{jk}\bar{\theta}^j \wedge \bar{\theta}^k.$$

Then (4) is equivalent to $C^i_{jk}=0, \ \forall 1\leq i,j,k\leq n.$ Let $f:M\to\mathbb{C}$ be a smooth function. Then

$$0 = \bar{\partial}^2 f = (d(\bar{\partial}f))^{(0,2)} = (d((\bar{\partial} - d)f))^{(0,2)} = -(d(\partial f))^{(0,2)}$$
$$= -\theta_i(f)C^i_{ik}\bar{\theta}^j \wedge \bar{\theta}^k.$$

Since f is chosen arbitrarily, $C_{jk}^i = 0, \forall 1 \leq i, j, k \leq n$.

We will not prove $(2)\Rightarrow(1)$ here. This part is very hard. We leave a reference to the reader.

The only spheres which admit almost complex structures are S^2 and S^6 (Borel-Serre, 1953). In particular, S^4 cannot be given an almost complex structure (Ehresmann and Hopf). Whether the S^6 has a complex structure is an open question.

1.1. MANIFOLDS 7

Definition 1.1.8. Let ω be a non-degenerate real valued 2-form on M. If $d\omega = 0$, ω is called a symplectic form on M. In this case, (M, ω) is called a **symplectic manifold**.

The following Proposition follows from Lemma 1.1.3.

Proposition 1.1.9. The symplectic manifold is almost complex.

Definition 1.1.10. Let (g, J, ω) be the compatible triple on almost complex manifold M defined in Definition 1.1.4. If one of the statements in Theorem 1.1.7 holds and $d\omega = 0$, M is called a **Kähler manifold**. In this case, ω is called the **Kähler form** and g is called the **Kähler metric**.

Example 1.1.11. Let $M = \mathbb{C}^n$. Then from (1.1.22),

$$\omega = \frac{\sqrt{-1}}{2} dz^i \wedge d\bar{z}^i = \sum_{i=1}^n dx_i \wedge dy_i. \tag{1.1.24}$$

is a Kähler form of \mathbb{C}^n .

Example 1.1.12 (Projective space). The complex projective space \mathbb{CP}^n is the set of complex lines in \mathbb{C}^{n+1} or, equivalently,

$$\mathbb{CP}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^*, \tag{1.1.25}$$

where \mathbb{C}^* acts by multiplication on \mathbb{C}^{n+1} . The topology of \mathbb{CP}^n is induced by (1.1.25). The points of \mathbb{CP}^n are written as $[z_0:z_1:\cdots:z_n]$ for $(z_0,\cdots,z_n) \neq (0,\cdots,0)$, which means that for $\lambda \in \mathbb{C}^*$, $[\lambda z_0:\lambda z_1:\cdots:\lambda z_n]$ and $[z_0:z_1:\cdots:z_n]$ define the same point in \mathbb{CP}^n . The standard open covering of \mathbb{CP}^n is given by

$$U_i = \{ [z_0 : z_1 : \dots : z_n] : z_i \neq 0 \} \subset \mathbb{CP}^n.$$
 (1.1.26)

It is open for the induced topology. Consider the bijective map $\varphi_i: U_i \to \mathbb{C}^n$ by

$$\varphi_i([z_0:z_1:\dots:z_n]) = \left(\frac{z_0}{z_i},\dots,\frac{z_{i-1}}{z_i},\frac{z_{i+1}}{z_i},\dots,\frac{z_n}{z_i}\right). \tag{1.1.27}$$

It is a homeomorphism. For the transition maps $\varphi_{ij} := \varphi_i \circ \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$, for

$$(\theta_1, \cdots, \theta_n) = \left(\frac{z_0}{z_j}, \cdots, \frac{z_{j-1}}{z_j}, \frac{z_{j+1}}{z_j}, \cdots, \frac{z_n}{z_j}\right) \in \mathbb{C}^n, \tag{1.1.28}$$

we may assume i < j and get

$$\varphi_{i} \circ \varphi_{j}^{-1}(\theta_{1}, \cdots, \theta_{n}) = \left(\frac{z_{0}}{z_{i}}, \cdots, \frac{z_{i-1}}{z_{i}}, \frac{z_{i+1}}{z_{i}}, \cdots, \frac{z_{n}}{z_{i}}\right)$$

$$= \left(\frac{\theta_{1}}{\theta_{i+1}}, \cdots, \frac{\theta_{i}}{\theta_{i+1}}, \frac{\theta_{i+2}}{\theta_{i+1}}, \cdots, \frac{\theta_{j}}{\theta_{i+1}}, \frac{1}{\theta_{i+1}}, \frac{\theta_{j+1}}{\theta_{i+1}}, \cdots, \frac{\theta_{n}}{\theta_{i+1}}\right). \quad (1.1.29)$$

These maps are obviously bijective and holomorphic.

Consider the (1, 1)-form

$$\omega = \sqrt{-1}\partial\bar{\partial}\log(|z|^2) = \sqrt{-1} \cdot \frac{|z|^2 \delta_{ij} - \bar{z}_i z_j}{|z|^4} dz^i \wedge d\bar{z}^j$$
 (1.1.30)

on $\mathbb{C}^{n+1}\setminus\{0\}$. Observe that for $\lambda\in\mathbb{C}^*$,

$$\sqrt{-1}\partial\bar{\partial}\log(|\lambda z|^2) = \sqrt{-1}\partial\bar{\partial}(\log|\lambda|^2 + \log|z|^2)$$
$$= \sqrt{-1}\partial\bar{\partial}\log(|z|^2). \quad (1.1.31)$$

So from (1.1.25), the (1,1)-form in (1.1.30) induces a (1,1)-form $\omega_{\mathbb{CP}}$ on \mathbb{CP}^n . We claim that it is a Kähler form on \mathbb{CP}^n .

Since $\partial \bar{\partial} \log(|z_i|^2) = \partial \bar{\partial} (\log(z_i) + \log(\bar{z}_i)) = 0$, restricted on U_i , from (1.1.28), (1.1.30) and (1.1.31),

$$\omega_{\mathbb{CP}}|_{U_i} = \sqrt{-1}\partial\bar{\partial}\log(1+|\theta|^2) + \sqrt{-1}\partial\bar{\partial}\log(|z_j|^2) = \sqrt{-1}\partial\bar{\partial}\log(1+|\theta|^2)$$
$$= \sqrt{-1} \cdot \frac{(1+|\theta|^2)\delta_{kl} - \bar{\theta}_k\theta_l}{(1+|\theta|^2)^2}d\theta^k \wedge d\bar{\theta}^l. \quad (1.1.32)$$

Since the matrix $((1+|\theta|^2)\delta_{kl}-\bar{\theta}_k\theta_l)$ is positive definite, we obtain that $\omega_{\mathbb{CP}}$ is a Kähler form and $(\mathbb{CP}^n,\omega_{\mathbb{CP}})$ is a Kähler manifold. The metric induced by (1.1.15), which we denote by g^{FS} , is called the Fubini-Study metric. By (1.1.32), on U_i ,

$$g_{k\bar{l}}^{FS} = \frac{\partial^2}{\partial \theta_k \partial \bar{\theta}_l} \log(1 + |\theta|^2) = \frac{(1 + |\theta|^2)\delta_{kl} - \bar{\theta}_k \theta_l}{(1 + |\theta|^2)^2}.$$
 (1.1.33)

In the followings, we will also denote the Kähler form $\omega_{\mathbb{CP}}$ by ω_{FS} .

Remark that \mathbb{CP}^n is simply connected. In fact, $\mathbb{CP}^n = S^{2n+1}/S^1$. From fibre exact sequence

$$\cdots \to \pi_1(S^{2n+1}) \to \pi_1(\mathbb{CP}^n) \to \pi_0(S^1) \to \cdots, \tag{1.1.34}$$

since $\pi_1(S^{2n+1}) = \pi_0(S^1) = \{1\}$, we have $\pi_1(\mathbb{CP}^n) = \{1\}$.