Chapter 1

Kahler manifolds

1.1 Manifolds

Let M be an 2n-dimensional manifold. Let T'M be the tangent vector bundle
over M. Let End(T'M) be the real vector bundle over M such that the fibre
End(TM)|, for any € M is canonically isomorphic to End(T'M|,). Let E
be a vector bundle over M. Let (M, E) be the space of smooth sections
of E'on M. Let Q" (M, E) be the smooth r-forms on M with values in E.

Definition 1.1.1. The manifold M is called a almost complex manifold if
there exists J € ¢ (M, End(T M)) such that J? = — Id. The endomorphism
J is called the almost complex structure of T'M.

For x € M, the almost complex structure J induces a splitting of complex
vector spaces,

T,M ®g C=TYOM @ 7OV M, (1.1.1)

where Tagl’O)M and T, éo’l)M are the eigenspaces of J corresponding to the
eigenvalues /—1 and —+/—1, respectively. Since J is smooth, TMOM =
(TN Y pens and TOYM = {TY MY, cpr are vector bundles.

A continuous map m : E — M between two Hausdorff spaces is called
a complex vector bundle of rank r if for any € M, E, := 7 () is a
complex vector space of dimension r and there is a neighbourhood U of x
and a homeomorphism

Y (U) = UxC (1.1.2)

such that for any p € U, ¥(E,) = {p} xC" and 9|, is a complex linear space
isomorphism. The pair (U, ) is called a local trivialization. For a complex
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vector bundle m : ' — M, E is called the total space and M the base space.
We often say that F is a vector bundle over M. Notice that for two local
trivializations (U;, ;) and (Uj,1;), the map ; o qu_l S (U;nUj) x C" —
(U; N Uj) x C" induces a transition map

1/}ij U; N Uj — GL(T’, (C) (113)

When r = 1, we will call £ a complex line bundle.

It is easy to see that The eigenbundles T AL and TV M are complex
vector bundles over M.

Let 790 and T*OY M be the dual bundles respectively. We denote
by

QPUM) = € (M, AP (T*VO M) @ AT OV M)). (1.1.4)
By (1.1.1), we have

oMM, C) = P (M). (1.1.5)
pt+q=k
If a € QP9(M), we say that « is a (p, q)-form. For o € QP9(M), from

(1.1.5), we have da = > (da)U®) | where (da)UF) € QIF(M). We
define

j+k=p+q+1

o = (da) P19 Gy = (da)Pa+D, (1.1.6)
Let g be any Riemannian metric on T'M compatible with J, i.e.,
g(JU, JV) =g(U, V) (1.1.7)

forany U,V € T, M, x € M.
Take e; € T,M. Then g(Jej,e;) = 0 by J? = —1d. Take orthonormal

vectors ey, - e, € T,M. If epyq ¢ span{ey, Jeq, - ey, Jex} , then so is
Jepi1. So we can construct an orthonormal basis of T, M with the form
{e1, -, e, } such that e,.; = Je;, 1 <i < n. Moreover,

ngLO)M = C{el —V=legr, o en — v _162”}’
Tz(O,l)M — C{@l + ‘/_1€n+17 RIS SRV, _16271}'
We also denote by g the C-bilinear form on T'M ®g C induced by g on

TM. From (1.1.8), we could see that g vanishes on THOM x T M and
TODM x TOD M. That is, for any Z, Z' € THO M,

(1.1.8)

9(Z,2")y = g9(Z,7") = 0. (1.1.9)
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Let

1 - 1
9]' = ﬁ(ej —V _1en+j>7 Qj = E

Then {6;}1<j<n and {0;}1<j<, form orthonormal basis of complex vector
spaces T8 M and T{"" M respectively. Let {67}1<j<n be the dual frame of
{0;}1<j<n- Let € be the dual of e;. We have

(ej + _1en+j)7 1 Sj S n. (1110)

ej:%@umenﬂ'), - L

From (1.1.11), we have

(¢ —/—Te"™), 1<j<n. (LLII)

S

(V=1)"0" AN A" NI AN =e A AP (1.1.12)
Proposition 1.1.2. The almost complex manifold is orientable.

Proof. Let {e},---,e5,} be another basis of TM. We may assume that
er.; = Jej, 1 < i < n. Then there exists a € C* = C\{0} such that
PN ANO" = -0 AN---AO". Since O A - AN =a -0 A--- AO”, from
(1.1.12), we have €' A -+ - A& = |a?e! A -+ A

So our proposition follows from |a|? > 0. O

Let w be the real 2-form defined by
w(X,Y)=g(JX,Y) (1.1.13)

for vector fields X, Y. Note that w(X,Y) = —w(Y, X) follows from g(JX,Y) =
g(J?X,JY) = —g(JY, X). Since g is non-degenerate, by (1.1.9), w is a non-
degenerate real (1, 1)-form. Since g is compatible with J, so is w.

Conversely, we have the following lemma.

Lemma 1.1.3. If there exists a non-degenerate real 2-form w on M, then
M is almost complez.

Proof. Choose a metric g on T'M. Since w is real and non-degenerate, there
exists invertible skew-symmetric A € €°°(M, End(TM)) such that

W(X,Y) = g(AX,Y) (1.1.14)

for any vector fields X, Y. Since —A? is positive definite, (—A2)Y/? is invert-
ible. Then our lemma follows by defining J = ((—A42)/2)~1A. O
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Note that fixing a non-degenerate real (1, 1)-form w on almost complex
manifold (M, J) compatible with J, we could construct a Riemannian metric
compatible with J by

9(X,)Y) =w(X,JY) (1.1.15)
for vector fields X and Y.

Definition 1.1.4. A triple (g, J, w) satisfying (1.1.7) and (1.1.13) is called a
compatible triple of almost complex manifold M.

Definition 1.1.5. A complex manifold is a manifold with an atlas of
charts to the open unit disk in C™, such that the transition maps are holo-
morphic.

Proposition 1.1.6. The complex manifold is almost complex.

Proof. Let {z!,---2"} be alocal chart of a complex manifold M with complex
dimension n. Denote by ¥ = 2% + /—1y*. Then {z!,¢y*,--- , 2", 9"} is a
local chart of M as real manifold. So {%, a%lv e a%w 8?”} is a real basis

of TM. For x € M, the linear transform J, : T,M — T, M is defined by

0 0 0 0
i (a) = (o) = o 110

Obviously, JZ = —1Id.

We claim that the definition of J, does not depend on the coordinates.
In fact, let {6,--- 0"} be another local complex chart of M. Then by the
definition of complex manifold, 27 is holomorphic on 6% for any 1 < j, k < n.
That is, for 0¥ = u*F + /—1v*, we have g% = g%, % = —g% (Cauchy-
Riemann equation). Therefore,

d oxi 9 Oy 0 )
e (%) = (auk o0 a@) = ook

o\ (000 8y a\ D
Je (a—) = (avk 90 a@) = T od

So the endomorphism J in (1.1.16) is global defined.
The proof of our proposition is completed. O

For a complex manifold M, the almost complex structure defined in
(1.1.16) is called the canonical almost complex structure of M. Moreover,
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{Z, 5%} and {z%, -, 52} are basis of THOM and TV M respec-
tively. Let dz’, dz' be the duals of 5%, ;2 respectively. Then
dz' = da' +/—1dy', dz' = da' — /—1dy’ (1.1.17)
and
0 1/ 0 9, 0 1/ 0 0
- = — - — v/ —1— - = — -+ vV—1—]. 1.1.18
9zt 2 ((%Z 8y2) o0z 2 (890’ * 8y’) ( )
From (1.1.9), locally for any 1 <i,7 <mn,
g 0 g 0
g(@z”f)ﬂ) g(f)z“@ﬂ) 0 ( 9)
We write
o 0 o 0
95 =9 <%, %> v 95 =9 (%7 %> : (1.1.20)
Then
9i5 = Jij- (1.1.21)
From (1.1.13) and (1.1.18), we have
w=V—1g5dz" Ndz’. (1.1.22)

We could easily check that the right hand side of (1.1.22) does not depend
on the basis.
The Nijenhuis tensor NY : TM x TM — TM is given by

N (VW) = [V,W] + JJV,W]| + J[V,JW] — [JV, JW] (1.1.23)
for V., W vector fields on M.

Theorem 1.1.7 (Newlander-Nirenberg). Let (M,J) be a almost complex
manifold. The following statements are equivalent:

(1) M is a complex manifold and J is the canonical almost complez struc-
ture of M.

(2) TS0 M is formally integrable, that is, for any X,Y € €>=(M,T"0 M),
[(X,Y] € €°(M, THOM).

(3) TOYM is formally integrable.

(4) NV =0.

(5) On QEO(M), d =0+ 0.

(6) On QPO (M), d =0+ 0.

(7) 9 = 0.

If (M, J) satisfies one of the above statements, we say that the almost
complex structure J s integrable.
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Proof. (1)=>(2): Write X = X% . Then

oY1 90X 9

XY]|=X " " _ (M. TEO A,
X, Y] 622823+ 8zﬂ8z’€% (M, )

(2)<(3) follows from [X,Y] = [X,Y].

(3)(4): For X, Y € €°(M,TM), then X +/—1JX,Y +/—1JY €
€°(M, TOVM). Let Z = [X++/—1JX,Y ++/—1JY]. It is easy to calculate
that Z— \/_ J7Z =N’ (X,Y)—v/=1JN’(X,Y). So Z € €=°(M, TV M) &
N(X,Y) =

(3)=(5): ( ) is equivalent to that for any 6 € QU0 (A1), (d9)©? = 0.
For X,Y € €>(M, TV M),

do(X,Y) = X(0(Y)) — Y (6(X)) — 0([X,Y]) = —0([X,Y]).
So

do(X,Y) =0 Vo€ QM) X,Y € ¢=(M, TV M)
© 0(X,Y])) =0 v eQtOM) X,Y € ¢>(M,T"VM)
< [X,Y] € €°(M, T(O,l)M) VX,Y € €°(M, T(O’l)M)

(5)<(6): Suppose (5) holds. By complex conjugation, on QN (M), we
have d = & + 0. Then (6) follows from the Leibniz rule.

(6)=>(7) follows from d* = 0.

(7)=(5): Let {#',---,0"} be a local frame of T*("9) M. Let

A" = AL07 A O" + Bit? AGF + ClLoT NG

Then (4) is equivalent to Cf, = 0, V1 < 4,5,k < n. Let f: M — C be a
smooth function. Then

0=0f = (d(0f)? = (d((0 - d)))** = —(d(2£))"?
= —0:(f) ;ke_j NG

Since f is chosen arbitrarily, C’]’:lC =0,V1<i, 5,k <n.
We will not prove (2)=-(1) here. This part is very hard. We leave a
reference to the reader. O

The only spheres which admit almost complex structures are S? and S¢
(Borel-Serre, 1953). In particular, S* cannot be given an almost complex
structure (Ehresmann and Hopf). Whether the S° has a complex structure
is an open question.
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Definition 1.1.8. Let w be a non-degenerate real valued 2-form on M. If
dw = 0, w is called a symplectic form on M. In this case, (M, w) is called a
symplectic manifold.

The following Proposition follows from Lemma 1.1.3.
Proposition 1.1.9. The symplectic manifold is almost complez.

Definition 1.1.10. Let (g, J,w) be the compatible triple on almost complex
manifold M defined in Definition 1.1.4. If one of the statements in Theorem
1.1.7 holds and dw = 0, M is called a Kahler manifold. In this case, w is
called the Kahler form and g is called the Kahler metric.

Example 1.1.11. Let M = C". Then from (1.1.22),

V-1 i N
w= sz Ndz :;dxi/\dyi. (1.1.24)

is a Kahler form of C".

Example 1.1.12 (Projective space). The complex projective space CP"
is the set of complex lines in C"*! or, equivalently,

CP" = (C**"\{0})/C*, (1.1.25)
where C* acts by multiplication on C"!. The topology of CP" is induced by
(1.1.25). The points of CP" are written as [z : 21 : - -+ : 2] for (20, , 2n) #
(0,---,0), which means that for A\ € C*, [Azg : Az : -+ : Az,] and [z : 2 :

: 2z, define the same point in CP". The standard open covering of CP"
is given by

Ui:{[zozzl R ZZn] Zl%O}C(CPn (1126)

It is open for the induced topology. Consider the bijective map ¢; : U; — C*
by

20 Zi—1 Zit1 Zn
(oo iz))=—, -, : g, — 1.1.27
pllaieeal) = (2o FELE LB )
It is a homeomorphism. For the transition maps ¢;; = ¢; o gpj_l c (U N

Uj) — QOJ(UZ N Uj), for

(91’...,971):(@,...7@,@’...’&")6@1’ (1.1.28)

Zj Zj  Zj Zj
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we may assume ¢ < j and get

Z Zi—1 &j Z,
—1 o 0 1—1 i+1 n
901080] (‘917'”76n)_(_7”'7 ) 7”'7_)

Zi Zi Z; Zi
:(91 R IR/ B 9j+1...9n) (1.1.29)
92'-‘,—1’ 7 91’—&-1, 92'-‘,—1’ ’ 91’-&-1, 92‘—{-17 it 9i+1 . o

These maps are obviously bijective and holomorphic.
Consider the (1, 1)-form

5 2 2205 — Zi2j i\ o
w=+vV—-100log(|z|*) = V-1 ————=dz' NdZ’ (1.1.30)

|21

on C"™\{0}. Observe that for A € C*,

V—1001og(|\z|*) = V—100(log | \|* + log |2]*)
=+/—190log(]z|*). (1.1.31)

So from (1.1.25), the (1, 1)-form in (1.1.30) induces a (1, 1)-form wcp on CP".
We claim that it is a Kéahler form on CP".

Since 9d1log(|z]?) = 09(log(z;) + log(z;)) = 0, restricted on U;, from
(1.1.28), (1.1.30) and (1.1.31),

weplp, = V—1001log(1 + |0]%) + V=180 1log(|2;*) = vV —1901og(1 + |6]?)

k Nl
(e do* A df'. (1.1.32)

Since the matrix ((1+ |0]?)6x — 0x0;) is positive definite, we obtain that wcp
is a Kéhler form and (CP",wcp) is a Kéhler manifold. The metric induced
by (1.1.15), which we denote by ¢, is called the Fubini-Study metric. By
(1.1.32), on U;,

82 (1 + |9’2)5kzl — §k91

= —log(1+ 16]*) =

(1.1.33)

In the followings, we will also denote the Kéahler form wcp by wrs.

Remark that CP" is simply connected. In fact, CP" = S?"*1/S'. From
fibre exact sequence

s = (SPY) = 1 (CP?) — mo(SY) — - (1.1.34)

since 71 (S*"t1) = 71o(S?) = {1}, we have m (CP") = {1}.



